18 research outputs found

    The role of pedagogical tools in active learning: a case for sense-making

    Full text link
    Evidence from the research literature indicates that both audience response systems (ARS) and guided inquiry worksheets (GIW) can lead to greater student engagement, learning, and equity in the STEM classroom. We compare the use of these two tools in large enrollment STEM courses delivered in different contexts, one in biology and one in engineering. The instructors studied utilized each of the active learning tools differently. In the biology course, ARS questions were used mainly to check in with students and assess if they were correctly interpreting and understanding worksheet questions. The engineering course presented ARS questions that afforded students the opportunity to apply learned concepts to new scenarios towards improving students conceptual understanding. In the biology course, the GIWs were primarily used in stand-alone activities, and most of the information necessary for students to answer the questions was contained within the worksheet in a context that aligned with a disciplinary model. In the engineering course, the instructor intended for students to reference their lecture notes and rely on their conceptual knowledge of fundamental principles from the previous ARS class session in order to successfully answer the GIW questions. However, while their specific implementation structures and practices differed, both instructors used these tools to build towards the same basic disciplinary thinking and sense-making processes of conceptual reasoning, quantitative reasoning, and metacognitive thinking.Comment: 20 pages, 5 figure

    COVID-19 at War: The Joint Forces Operation in Ukraine

    Get PDF
    The ongoing pandemic disaster of coronavirus erupted with the first confirmed cases in Wuhan, China, in December 2019, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) novel coronavirus, the disease referred to as coronavirus disease 2019, or COVID-19. The World Health Organization (WHO) confirmed the outbreak and determined it a global pandemic. The current pandemic has infected nearly 300 million people and killed over 3 million. The current COVID-19 pandemic is smashing every public health barrier, guardrail, and safety measure in underdeveloped and the most developed countries alike, with peaks and troughs across time. Greatly impacted are those regions experiencing conflict and war. Morbidity and mortality increase logarithmically for those communities at risk and that lack the ability to promote basic preventative measures. States around the globe struggle to unify responses, make gains on preparedness levels, identify and symptomatically treat positive cases, and labs across the globe frantically rollout various vaccines and effective surveillance and therapeutic mechanisms. The incidence and prevalence of COVID-19 may continue to increase globally as no unified disaster response is manifested and disinformation spreads. During this failure in response, virus variants are erupting at a dizzying pace. Ungoverned spaces where nonstate actors predominate and active war zones may become the next epicenter for COVID-19 fatality rates. As the incidence rates continue to rise, hospitals in North America and Europe exceed surge capacity, and immunity post infection struggles to be adequately described. The global threat in previously high-quality, robust infrastructure health-care systems in the most developed economies are failing the challenge posed by COVID-19; how will less-developed economies and those healthcare infrastructures that are destroyed by war and conflict fare until adequate vaccine penetrance in these communities or adequate treatment are established? Ukraine and other states in the Black Sea Region are under threat and are exposed to armed Russian aggression against territorial sovereignty daily. Ukraine, where Russia has been waging war since 2014, faces this specific dual threat: disaster response to violence and a deadly infectious disease. To best serve biosurveillance, aid in pandemic disaster response, and bolster health security in Europe, across the North Atlantic Treaty Alliance (NATO) and Black Sea regions, increased NATO integration, across Ukraine’s disaster response structures within the Ministries of Health, Defense, and Interior must be reinforced and expanded to mitigate the COVID-19 disaster

    Search for Scalar Diphoton Resonances in the Mass Range 6560065-600 GeV with the ATLAS Detector in pppp Collision Data at s\sqrt{s} = 8 TeVTeV

    No full text
    A search for scalar particles decaying via narrow resonances into two photons in the mass range 65–600 GeV is performed using 20.3fb120.3\text{}\text{}{\mathrm{fb}}^{-1} of s=8TeV\sqrt{s}=8\text{}\text{}\mathrm{TeV} pppp collision data collected with the ATLAS detector at the Large Hadron Collider. The recently discovered Higgs boson is treated as a background. No significant evidence for an additional signal is observed. The results are presented as limits at the 95% confidence level on the production cross section of a scalar boson times branching ratio into two photons, in a fiducial volume where the reconstruction efficiency is approximately independent of the event topology. The upper limits set extend over a considerably wider mass range than previous searches
    corecore